Enhanced Kauffman Bracket: Talk References
 Will Hoffer, Adu Vengal, Anderson Weaver
 Knots \& Graphs 2017

Notation for (Bicolored) Crossings:

Figure 1. Local crossings.
Skein Relations (Eq.(1)):

$$
\begin{array}{ll}
N_{+}=a_{n} H+b_{n} V & N_{-}=a_{n}^{\prime} H+b_{n}^{\prime} V \\
S_{+}=a_{s} H+b_{s} V & S_{-}=a_{s}^{\prime} H+b_{s}^{\prime} V \\
E_{+}=a_{e} H+b_{e} V & E_{-}=a_{e}^{\prime} H+b_{e}^{\prime} V \\
W_{+}=a_{w} H+b_{w} V & W_{-}=a_{w}^{\prime} H+b_{w}^{\prime} V \\
<D \sqcup \bigcirc>=d<D> &
\end{array}
$$

Reidemeister Move Type II Restrictions, Simplified (Eq.(2)):

$$
\begin{array}{ccll}
a_{e}^{\prime}=a_{w}^{-1} & a_{w}^{\prime}=a_{e}^{-1} & a_{s}^{\prime}=a_{s}^{-1} & a_{n}^{\prime}=a_{n}^{-1} \\
b_{e}^{\prime}=b_{w}^{-1} & b_{w}^{\prime}=b_{e}^{-1} & b_{s}^{\prime}=b_{s}^{-1} & b_{n}^{\prime}=b_{n}^{-1} \\
-d=\frac{a_{w}}{b_{w}}+\frac{b_{w}}{a_{w}}=\frac{a_{e}}{b_{e}}+\frac{b_{e}}{a_{e}}=\frac{a_{s}}{b_{s}}+\frac{b_{s}}{a_{s}}=\frac{a_{n}}{b_{n}}+\frac{b_{n}}{a_{n}} &
\end{array}
$$

Theorem (Minimal Generating Set of Reidemeister Moves, Polyak) Two equivalent diagrams can be obtained from each other through isotopy and a finite sequence of four oriented Reidemeister moves:

Table Inside Smoothings of Reidemeister III Disks

	$a_{1} a_{2} a_{3}$	$a_{1} a_{2} b_{3}$	$a_{1} b_{2} a_{3}$	$a_{1} b_{2} b_{3}$	$b_{1} a_{2} a_{3}$	$b_{1} a_{2} b_{3}$	$b_{1} b_{2} a_{3}$	$b_{1} b_{2} b_{3}$
L		$A O$	${ }^{6}$				G	
L^{\prime}							G	A

Reidemeister Moves Type II \& III Restrictions (Eq.(3)):
Let a, b, n, s, w, ande be parameters for Eqs.(2) above. Then R-III yields that $n=s$ and we have:

$$
\begin{array}{llllll}
a_{n}=a_{s}=n a & b_{n}=b_{s}=n b & a_{w}=w a & b_{w}=w b & a_{e}=e a & b_{e}=e b \\
a_{n}^{\prime}=a_{s}^{\prime}=\frac{1}{n a} & b_{n}^{\prime}=b_{s}^{\prime}=\frac{1}{n b} & a_{w}^{\prime}=\frac{1}{e a} & b_{w}^{\prime}=\frac{1}{e b} & a_{e}^{\prime}=\frac{1}{w a} & b_{e}^{\prime}=\frac{1}{w b} \\
d=-\frac{a}{b}-\frac{b}{a}
\end{array}
$$

Theorem (The Knot/Link Invariant)

Let $F(D)=\left(-\frac{b}{n a^{2}}\right)^{w(D)}<D>$, where $w(D)$ denotes the writhe. Let $\bar{F}(D)$ denote the polynomial obtained from the other coloring of the knot. (The second coloring is obtained from the first by setting $\bar{w}=e$ and $\bar{e}=w$.)

For links, let Λ denote the set of all colorings for the link diagram, and $F(D, \lambda)$ the polynomial from a specific coloring $\lambda \in \Lambda$.

Using Skein relations (1), if equations (3) are satisfied, then $\{F(D), \bar{F}(D)\}$ is a knot invariant.

For a link L , choose one diagram D . Then $F(L)=\{F(D, \lambda) \mid \lambda \in \Lambda\}$ is a multivalued link invariant.

Example of Choice of Coefficients in $\mathbf{Z}_{2}[\mathbf{t}] /\left(\mathbf{1}+\mathbf{t}+\mathbf{t}^{\mathbf{3}}\right)$

$$
\left\{\begin{array}{l}
a_{n}=a_{s}=1, b_{n}=b_{s}=t, a_{w}=1+t^{2}, b_{w}=1, a_{e}=1+t, b_{e}=t+t^{2}, \\
a_{n}^{\prime}=a_{s}^{\prime}=1, b_{n}^{\prime}=b_{s}^{\prime}=1+t^{2}, a_{w}^{\prime}=t+t^{2}, b_{w}^{\prime}=1+t, a_{e}^{\prime}=t, b_{e}^{\prime}=1 \\
d=1+t+t^{2}
\end{array}\right.
$$

References

1. Z. Yang, Enhanced Kauffman Bracket, arXiv:1702.03391
2. M. Polyak, Minimal generating sets of Reidemeister moves, Quantum Topology, vol. 1, Issue 4, (2010), 399C411.
