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Notation for (Bicolored) Crossings:
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Skein Relations (Eq.(1)):
Ny =a,H + b,V N_=a,H+0b,V
Sy =asH + bV S_=aH+VV
E. =a.H +bV E_=dH+V
Wy = anH + b,V W_=al,H+b,V
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Reidemeister Move Type II Restrictions, Simplified (Eq.(2)):
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Theorem (Minimal Generating Set of Reidemeister Moves, Polyak)
Two equivalent diagrams can be obtained from each other through isotopy and
a finite sequence of four oriented Reidemeister moves:
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Table Inside Smoothings of Reidemeister III Disks

ajazay | magbs | aibaay [ mibeba | bason | lasha | libgaa | Mbaba

Reidemeister Moves Type II & III Restrictions (Eq.(3)):
Let a,b,n, s, w,ande be parameters for Egs.(2) above. Then R-III yields that
n = s and we have:
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Theorem (The Knot/Link Invariant)
Let F(D) = (—:t )w(D) < D >, where w(D) denotes the writhe. Let
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F(D) denote the polynomial obtained from the other coloring of the knot. (The
second coloring is obtained from the first by setting w = e and € = w.)

For links, let A denote the set of all colorings for the link diagram, and
F(D, \) the polynomial from a specific coloring A € A.

Using Skein relations (1), if equations (3) are satisfied, then {F(D), F(D)}
is a knot invariant.

For a link L, choose one diagram D. Then F(L) = {F(D,)\)|\ € A} is a
multivalued link invariant.

Example of Choice of Coefficients in Z,[t]/(1 +t +t3)

iy —ay = L, by = b, = £, a, 14+t by =l,a, =14+t b=t +£2,
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